Search results for " Group Theory"

showing 10 items of 117 documents

Lie Algebras Generated by Extremal Elements

1999

We study Lie algebras generated by extremal elements (i.e., elements spanning inner ideals of L) over a field of characteristic distinct from 2. We prove that any Lie algebra generated by a finite number of extremal elements is finite dimensional. The minimal number of extremal generators for the Lie algebras of type An, Bn (n>2), Cn (n>1), Dn (n>3), En (n=6,7,8), F4 and G2 are shown to be n+1, n+1, 2n, n, 5, 5, and 4 in the respective cases. These results are related to group theoretic ones for the corresponding Chevalley groups.

17B05[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Non-associative algebraAdjoint representationGroup Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Graded Lie algebraCombinatoricsMathematics - Algebraic Geometry0103 physical sciences[MATH.MATH-RA] Mathematics [math]/Rings and Algebras [math.RA]FOS: Mathematics0101 mathematicsAlgebraic Geometry (math.AG)[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicsDiscrete mathematicsAlgebra and Number TheorySimple Lie group010102 general mathematics[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA]20D06[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Rings and AlgebrasKilling formAffine Lie algebra[ MATH.MATH-RA ] Mathematics [math]/Rings and Algebras [math.RA]Lie conformal algebra[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Adjoint representation of a Lie algebraRings and Algebras (math.RA)17B05; 20D06010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Group TheoryJournal of Algebra
researchProduct

The average element order and the number of conjugacy classes of finite groups

2021

Abstract Let o ( G ) be the average order of the elements of G, where G is a finite group. We show that there is no polynomial lower bound for o ( G ) in terms of o ( N ) , where N ⊴ G , even when G is a prime-power order group and N is abelian. This gives a negative answer to a question of A. Jaikin-Zapirain.

20D15 20C15 20E45Finite groupPolynomialAlgebra and Number TheoryGroup (mathematics)010102 general mathematicsGroup Theory (math.GR)01 natural sciencesUpper and lower boundsElement OrderCombinatoricsConjugacy class0103 physical sciencesFOS: MathematicsOrder (group theory)010307 mathematical physics0101 mathematicsAbelian groupMathematics - Group TheoryG110 Pure MathematicsMathematics
researchProduct

Machine $B_4$

2020

We construct map $\xi$. It exhibits dense orbits for all $x\in\overline{0,1}^\omega$. We give elementary proofs for all statements.

20F10 68Q70 20B07:20B35Mathematics - Group TheoryF.1.1
researchProduct

The proof of Birman’s conjecture on singular braid monoids

2003

Let B_n be the Artin braid group on n strings with standard generators sigma_1, ..., sigma_{n-1}, and let SB_n be the singular braid monoid with generators sigma_1^{+-1}, ..., sigma_{n-1}^{+-1}, tau_1, ..., tau_{n-1}. The desingularization map is the multiplicative homomorphism eta: SB_n --> Z[B_n] defined by eta(sigma_i^{+-1}) =_i^{+-1} and eta(tau_i) = sigma_i - sigma_i^{-1}, for 1 <= i <= n-1. The purpose of the present paper is to prove Birman's conjecture, namely, that the desingularization map eta is injective.

20F36 57M25. 57M27[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Monoid[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid group20F36Group Theory (math.GR)01 natural sciencesBirman's conjecture[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsMathematics - Geometric TopologyMathematics::Group Theory57M25. 57M27Mathematics::Category Theory[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: MathematicsBraid0101 mathematics[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR][MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]MathematicsConjecturedesingularization010102 general mathematicsMultiplicative functionSigmaGeometric Topology (math.GT)singular braidsInjective function010101 applied mathematicsHomomorphismGeometry and TopologyMathematics - Group TheoryGeometry & Topology
researchProduct

Efficacy and complications associated with a modified inferior alveolar nerve block technique. A randomized, triple-blind clinical trial

2014

Objectives: To compare the efficacy and complication rates of two different techniques for inferior alveolar nerve blocks (IANB). Study Design: A randomized, triple-blind clinical trial comprising 109 patients who required lower third molar removal was performed. In the control group, all patients received an IANB using the conventional Halsted technique, whereas in the experimental group, a modified technique using a more inferior injection point was performed. Results: A total of 100 patients were randomized. The modified technique group showed a significantly higher onset time in the lower lip and chin area, and was frequently associated to a lingual electric discharge sensation. Three f…

AdultMaleMolarmedicine.medical_specialtyAnestèsia en odontologiaMandibular Nervemedicine.medical_treatmentMandibular nerveBlock (permutation group theory)OdontologíaInferior alveolar nerveFacial nerveInjectionsDouble-Blind MethodmedicineHumansTeeth extractionGeneral DentistryExtracció dentalbusiness.industryNervi facialResearchNerve BlockDent molar:CIENCIAS MÉDICAS [UNESCO]MolarCiencias de la saludChinInjeccionsSurgeryClinical trialTreatment Outcomemedicine.anatomical_structureOtorhinolaryngologyAnesthesiaTooth ExtractionUNESCO::CIENCIAS MÉDICASNerve blockFemaleSurgeryOral SurgeryAnesthesia in dentistryComplicationbusiness
researchProduct

Injectors with a normal complement in a finite solvable group

2011

Abstract Suppose G is a finite solvable group, and H is a subgroup with a normal complement in G. We shall find necessary and sufficient conditions (some of which are related to the properties of coprime actions) for H to be an injector in G. We shall also use these criteria to find characterizations of injectors which need not have a normal complement.

AlgebraAlgebra and Number TheoryCoprime integersSolvable groupinjectorfitting setfinite solvable group theorynormal complementComplement (complexity)Mathematics
researchProduct

Blocks with Equal Height Zero Degrees

2009

We study blocks all of whose height zero ordinary characters have the same degree. We suspect that these might be the Broue-Puig nilpotent blocks.

Applied MathematicsGeneral MathematicsMathematical analysisFOS: MathematicsZero (complex analysis)GeometryGroup Theory (math.GR)Mathematics::Representation TheoryMathematics - Group TheoryMathematics20C20
researchProduct

Multiply Transitive Permutation Groups

1982

Since the beginnings of finite group theory, the multiply transitive permutation groups have exercised a certain fascination. This is mainly due to the fact that apart from the symmetric and alternating groups not many of them were known. Only very recently final results about multiply transitive permutation groups have been proved, using the classification of all finite simple groups (see 7.5).

Base (group theory)CombinatoricsTransitive relationFinite group theoryPermutation graphClassification of finite simple groupsPermutation groupCyclic permutationMathematics
researchProduct

Injectors with a central socle in a finite solvable group

2013

Abstract In response to an Open Question of Doerk and Hawkes (1992) [2, IX §4, p. 628] , we shall describe three constructions for the Z π -injectors of a finite solvable group, where Z π is the Fitting class formed by the finite solvable groups whose π -socle is central (and π is a set of prime numbers).

Class (set theory)Algebra and Number Theoryfitting classinjectorPrime numberFitting subgroupCombinatoricsSet (abstract data type)Soclecentral socleSolvable groupfinite solvable group theoryNilpotent groupMathematics
researchProduct

Roots in the mapping class groups

2006

The purpose of this paper is the study of the roots in the mapping class groups. Let $\Sigma$ be a compact oriented surface, possibly with boundary, let $\PP$ be a finite set of punctures in the interior of $\Sigma$, and let $\MM (\Sigma, \PP)$ denote the mapping class group of $(\Sigma, \PP)$. We prove that, if $\Sigma$ is of genus 0, then each $f \in \MM (\Sigma)$ has at most one $m$-root for all $m \ge 1$. We prove that, if $\Sigma$ is of genus 1 and has non-empty boundary, then each $f \in \MM (\Sigma)$ has at most one $m$-root up to conjugation for all $m \ge 1$. We prove that, however, if $\Sigma$ is of genus $\ge 2$, then there exist $f,g \in \MM (\Sigma, \PP)$ such that $f^2=g^2$, $…

Class (set theory)Pure subgroupGeneral MathematicsBoundary (topology)SigmaGeometric Topology (math.GT)Group Theory (math.GR)Surface (topology)Mapping class groupCombinatoricsMathematics - Geometric Topology57M99Genus (mathematics)FOS: MathematicsMathematics - Group TheoryFinite setMathematicsProceedings of the London Mathematical Society
researchProduct